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Technical note
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ABSTRACT
A visualization method was employed for accurate non-intrusive measurement of velocity fields at a physical model of a sharp-crested rectangular
sideweir under subcritical flow. The experimental observation of velocity vectors at various horizontal planes over the entire width of the main channel
confirms that the flow conditions at sideweir are non-uniform. The coefficients of non-uniform velocity distribution were in the range from 1 to 1.1. The
present study focuses on the relation between the longitudinal components of the overflow velocities and the corresponding cross-sectional average
velocities in the main channel, detailed as a function of flow depth and of location along the sideweir crest. For different sideweir geometries, these
coefficients varied between 1 and 1.2.
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1 Introduction

Sideweirs are hydraulic structures for diverting discharge from
a main channel to a lateral. They are widely used to control
discharge in irrigation, sewer, and flood management systems.

The performance of sideweirs was investigated from the pio-
neering work of De Marchi (1934), seminal work of Hager (1982,
1983, 2010), to recent work of Emiroglu et al. (2011). Most
concentrated on the total lateral outflow Qs, the free surface
profile, and the discharge coefficient Cd . In contrast, this work
focuses on the experimental determination of the velocity field
of a model sideweir using a non-intrusive visualization method.
The velocity-related terms are included in the fundamental
one-dimensional equation for spatially-varied flow. Its energy-
approach-based form includes the kinetic energy coefficient

α, while the momentum-approach-based equation includes the
overflow velocity component parallel to main channel axis U,
the average channel flow velocity V, and the momentum coeffi-
cient β. The measured velocity fields indicate either U = V, as
assumed in the constant energy approach, or U > V, as implied
by the momentum approach. Using non-intrusive visualiza-
tion causes accurate flow observations result, whereas intrusive
instrumentation causes significant flow perturbations.

Recent works based on the constant energy approach are by
Singh et al. (1994), Swamee et al. (1994), Borghei et al. (1999),
or Rosier et al. (2010). The effect of specific energy variation was
considered by Yüksel (2004) and Venutelli (2008). Representa-
tive works based on the momentum approach are by El-Khashab
and Smith (1976), Hager and Volkart (1986), Lee and Holley
(2002), or May et al. (2003).
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2 Methodology

The velocity field of sideweir flow can be determined using
either pathlines or streaklines (Kline 1969). The non-intrusive
computer-aided visualization method of Bajcar et al. (2009) was
employed. This method determines the vector velocity field from
a scalar field of pollutant concentrations using the sequence of
grayscale images of the observed flow. This approach is based
directly on the physical advection–diffusion equation represent-
ing the basic connection between pollutant concentration and the
flow kinematics as

∂N
∂t

+ ∂(Nvi)

∂xi
= D∇2N (1)

By knowing concentration N , its derivatives, and the molecular
diffusivity D of the pollutant, the only unknown is velocity, i.e. its
components vi in the directions xi. The pollutant is introduced to
the fluid, then illuminated and digitally recorded on a high-speed
film. The grayscale values of these images correspond to the rela-
tion A ∝ N , where A is an average grayscale value in the selected
window of pixels on a grayscale image. Both temporal and spa-
tial derivatives of concentration in Eq. (1) are approximated
by knowing the duration between two successive images and
the dimensions of grayscale images. The approximated spatial
derivatives are then numerically determined.

The method differs from other visualization methods based
on the correlation of successive flow images. Furthermore, the
method does not require timelines, as employed by Dargahi
(1997), and works well with pollutants such as dye, bubbles,
or particles. Herein, the electrolysis-generated hydrogen bubbles
were employed as the most suitable pollutant for a small testing
facility.

Okamoto et al. (1971) specified the uncertainties of the hydro-
gen bubble visualization as (1) horizontal streamline shift by

buoyancy, (2) entry length for bubble acceleration, (3) wake flow
behind wire, (4) centripetal force in curved flow, and (5) decay-
ing time by absorption. The optimum bubble diameter, which
is comparable to the wire diameter, is 0.06–0.15 mm (Okamoto
et al. 1971, Tropea et al. 2007). Following the latter, a wire of
0.5 mm diameter was used. Also, 1 kg of common salt was added
per 3 m3 of water to produce bubbles of less than 100 V (Dargahi
1997). To address the above issues, a preliminary test was con-
ducted to experimentally optimize the wire position, to adjust
the image acquisition equipment, and to calibrate the settings
for numerical calculation. Calibration tests with plastic and cork
particles were performed as well. The resulting velocities from
the calibrated visualization method Vc agreed well with these
observed with floats Vf , i.e Vc/Vf = 1(±3%).

3 Experimental setup

Six types of Plexiglas sideweirs involving various crest lengths
L and crest heights p were tested in a glass-walled horizontal
flume 7.5 m long, 0.2 m wide, and 0.5 m deep (Fig. 1). The flow
was always subcritical. The inflow Q1 and outflow Q2 discharges
were measured with V-notch weirs, while Qs = Q1–Q2. Free sur-
face elevations were measured using a point gauge of ±0.1 mm
reading accuracy and photos of laser-induced vertical sections
of the flow. The flow depth h2 at the downstream sideweir end
was adjusted for each Q1 to provide modular discharge Qs and
sufficient overflow depth h–p ≥ 19 mm (Emiroglu et al. 2011)
to avoid surface tension effects. The main hydraulic conditions
are given in Table 1. The study was based on a relatively narrow
channel, yet the dimensionless parameters were mostly within
the ranges of previous investigations (Table 2).

The velocity fields were recorded at five horizontal planes,
located by zw above the sideweir bed. Four distances zw were
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Figure 1 Definition sketch of experimental set-up (in cm): (a) plan, (b) elevation, and (c) section x/L = 0.5; points mark the locations of water level
measurement
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Table 1 Main test parameters, with h – p measured at L/2

Weir L = 25, p = 12 [cm] L = 20, p = 12 [cm] L = 20, p = 10 [cm] L = 15, p = 10 [cm] L = 15, p = 7.5 [cm] L = 10, p = 7.5 [cm]

Type a b c a b c a b c a b c a b c a b c

Q1 (l/s) 6.34 6.94 7.83 5.45 6.62 7.59 5.29 6.01 6.62 4.54 5.45 6.06 3.82 4.52 5.30 3.31 3.97 4.71
Qss (l/s) 1.09 1.36 1.79 0.83 1.35 1.83 1.05 1.29 1.52 0.89 1.09 1.29 1.09 1.24 1.34 0.84 0.84 0.92
Q1/Qs (–) 0.17 0.20 0.23 0.15 0.20 0.24 0.20 0.22 0.23 0.20 0.20 0.21 0.28 0.27 0.25 0.25 0.21 0.20
F1 (–) 0.28 0.31 0.33 0.25 0.28 0.31 0.29 0.31 0.34 0.25 0.28 0.30 0.29 0.33 0.36 0.26 0.29 0.32
h1 (cm) 13.73 13.91 14.25 13.69 14.28 14.63 11.98 12.44 12.59 12.06 12.58 12.84 9.66 10.01 10.41 9.52 9.99 10.36
h2 (cm) 13.96 14.21 14.63 13.88 14.42 14.92 12.20 12.60 12.89 12.21 12.78 13.10 9.84 10.24 10.71 9.59 10.07 10.46
h − p (cm) 1.89 2.05 2.47 1.90 2.37 2.79 2.06 2.48 2.73 2.19 2.67 2.90 2.24 2.60 3.05 2.05 2.49 2.93

Table 2 Ranges of measured parameters from previous and present studies

B L p So Q1 B/L F1 Qs/Q1
Authors (cm) (cm) (cm) (%) (l/s) (–) (–) (–)

El-Khashab and Smith (1976) 46 120,230 10–25 Varied ≤220 0.2–0.38 ≤1.2 0.3–0.8
Balmforth and Sarginson (1983) 100 46–76 4–12 – – 0.46–0.76 Varied –
Hager and Volkart (1986) 30 100 0–20 −4 to 5 0–45 0.3 0.3–2 –
Singh et al. (1994) 25 10–20 6–12 – 10–14 1.25–2.5 0.2–0.4 –
Swamee et al. (1994) 50 20–50 0–60 0 20–100 1–2.5 0.1–0.93 –
Borghei et al. (1999) 30 20–70 1,10,19 −0.5 to 1 35–100 0.43–1.5 0.1–0.9 –
Pinheiro and Silva (1999) 50 150,200 20 – 25–150 0.25–0.33 <1 0.25–0.75
May et al. (2003) 21–60 20–100 5–25 0 – 0.21–3 <1 0.08–1
Present study 14 10–25 7.5–12 0 4–7.8 0.56–1.4 0.28–0.34 0.20–0.27

selected in relation to p, i.e. zw/p = 0, 1/3, 2/3, and 1, respec-
tively, while the fifth plane was located 5 mm below the free sur-
face. The illumination was placed at zw on both channel sides to
illuminate a 5 mm high horizontal layer, reaching over the entire
sideweir width. The distance between the wire and the upstream
sideweir end was constant. To maintain recording quality, the
voltage of the adjustable DC source was increased for higher
zw. The camera was placed vertically above the channel. For
each test, some 1500 images were recorded at 300 frames/s and
then converted into grayscale images. Sets of 500 images were
employed to determine the velocity vectors in each pixel along
a selected section. Three sets were averaged to obtain the plane
velocity components Vx, Vy, and Ux, Uy. The standard deviation
of the velocity components was on average 0.6. Various param-
eters of the numerical calculation can be adjusted; the pixel size
proved to be an important factor, and was adjusted for each zw.

4 Results

4.1 Velocity fields

For all sideweir geometries and combinations of the inflow
Q1 and flow depth h2, the measured velocity fields were non-
uniform. Figure 2 shows a typical velocity field for zw = p.
As expected, the measured longitudinal velocity components
decrease with distance from water surface and also in the
direction x, while the outflow angle increases with x. At the
downstream sideweir end, weak standing waves were formed

Figure 2 Typical plane velocity field

above the crest. At the end of the sideweir, velocities near the
main channel bed decreased.

4.2 Velocity distribution coefficients

In general, the coefficients α and β increased along the sideweir
from 1.02 to 1.08 and from 1.01 to 1.03, respectively, in agree-
ment with α = [1 + (q/(Q/B))2]4/3 of Hager (1982), with q
being the unit overflow discharge. Also, values α at given x/L
increased from type (a) to type (c) test runs. At cross sections
0.25L upstream and downstream of the sideweir, respectively,
the coefficients α were similar to those at x/L = 0 and 1,
respectively.

The coefficients β were close to unity in all tests. The data
confirm that “approximately, β can be replaced by unity” (Hager
1983). However, β was significantly below the constant 1.23,
as proposed by May et al. (2003), who suggested β = 0.725 +
0.275(U/V ).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ju
bl

ja
na

] 
at

 0
4:

34
 2

9 
Fe

br
ua

ry
 2

01
2 



132 G. Novak et al. Journal of Hydraulic Research Vol. 50, No. 1 (2012)

Figure 3 Values of U/V versus (a) h/p and (b) x/L for maximum inflow discharges

4.3 Relation U/V

Values of U/V = f (h/p) were measured for h/p values ranging
from 1.15 to 1.4, resulting in U/V ∼= 1–1.2 (Fig. 3a). For a given
geometry, the U/V ratio increases with h/p. Figure 3(b) also
shows that U /V increases with the distance from the upstream
end of the sideweir. It is evident that U/V > 1.1 at x/L = 1 for
all sideweir geometries tested.

5 Conclusions

A visualization method was employed for accurate non-intrusive
measurement of the velocity fields at sharp-crested model
sideweirs in subcritical flow. The data indicate that the veloc-
ity distribution is highly non-uniform. Both the kinetic energy
and momentum correction coefficients vary along the sideweir
on the average from 1.02 to 1.08, and 1.01 to 1.03, respectively,
in agreement with an available proposal. Furthermore, the ratio
of the longitudinal overflow velocity component and the average
sideweir velocity varies essentially with the ratio of flow depth to
weir height. This ratio also varies along the sideweir. The present

data confirm the assumption of non-uniform velocity distribu-
tion, as implied by the momentum approach. The results of this
study apply for calibrating numerical models of sideweir flow.

Notation

F1 = approach flow Froude number (–)
L = length of sideweir (m)
p = height of sideweir crest (m)
Q1 = approach flow discharge (m3/s)
Qs = discharge over sideweir (m3/s)
U = streamwise sideweir velocity component (m/s)
V = average main channel flow velocity (m/s)
zw = observed horizontal plane (m)
α = kinetic energy correction coefficient (–)
β = momentum correction coefficient (–)
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